Краткая история времени. От большого взрыва до черных дыр

Смотрите также:

- 116 -

Пока у нас еще нет полной и согласованной теории, объединяющей квантовую механику и гравитацию. Но мы совершенно уверены в том, что подобная единая теория должна иметь некоторые определенные свойства. Во?первых, она должна включать в себя фейнмановский метод квантовой теории, основанный на суммах по траекториям частицы (и по «историям» Вселенной). При таком методе в отличие от классической теории частица уже не рассматривается как обладающая одной?единственной траекторией. Напротив, предполагается, что она может перемещаться по всем возможным путям в пространстве?времени и любой ее траектории отвечает пара чисел, одно из которых дает длину волны, а другое – положение в периоде волны (фазу). Например, вероятность того, что частица пройдет через некоторую точку, получается суммированием всех волн, отвечающих каждой возможной траектории, проходящей через эту точку. Но попытки произвести такое суммирование наталкиваются на серьезные технические затруднения. Их можно обойти, лишь воспользовавшись следующим специальным рецептом: складываются волны, образующие те истории (траектории) частиц, которые происходят не в ощущаемом нами реальном (действительном) времени, а в так называемом мнимом времени. Мнимое время звучит, возможно, научно?фантастически, но на самом деле это строго определенное научное понятие. Умножив обычное (или действительное) число само на себя, мы получим положительное число. (Например, число 2, умноженное на 2, дает 4, и то же самое получается при умножении –2 на –2). Но существуют особые числа (они называются мнимыми), которые при умножении сами на себя дают отрицательный результат. (Одно из таких чисел, мнимая единица i, при умножении само на себя дает –1, число 2i, умноженное само на себя, дает –4 и т. д.). Во избежание усложнений технического характера при вычислении фейнмановских сумм по траекториям следует переходить к мнимому времени. Это означает, что при расчетах время надо измерять не в действительных единицах, а в мнимых. Тогда в пространстве?времени обнаруживаются интересные изменения: в нем совершенно исчезает различие между временем и пространством. Пространство?время, в котором временная координата событий имеет мнимые значения, называют евклидовым, в честь древнегреческого ученого Евклида, основателя учения о геометрии двумерных поверхностей. То, что мы сейчас называем евклидовым пространством?временем, очень похоже на первоначальную геометрию Евклида и отличается от нее лишь числом измерений: четыре вместо двух. В евклидовом пространстве?времени не делается различий между осью времени и направлениями в пространстве. В реальном же пространстве?времени, где событиям отвечают действительные значения координаты времени, эти различия видны сразу: для всех событий ось времени лежит внутри светового конуса, а пространственные оси – снаружи. В любом случае, пока мы имеем дело с обычной квантовой механикой, мнимое время и евклидово пространство

- 116 -

Переидти к оглавлению

Страницы: 117 118 119