Краткая история времени. От большого взрыва до черных дыр

Смотрите также:

- 91 -

Поскольку энергию нельзя создать из ничего, один из членов пары частица – античастица будет иметь положительную энергию, а второй – отрицательную. Тот, чья энергия отрицательна, может быть только короткоживущей виртуальной частицей, потому что в нормальных ситуациях энергия реальных частиц всегда положительна. Значит, он должен найти своего партнера и с ним аннигилировать. Но, находясь рядом с массивным телом, реальная частица обладает меньшей энергией, чем вдали от него, так как для того, чтобы преодолеть гравитационное притяжение тела и удержаться вдали от него, нужна энергия. Обычно энергия частицы все?таки положительна, но гравитационное поле внутри черной дыры так велико, что даже реальная частица может иметь там отрицательную энергию. Поэтому, если имеется черная дыра, виртуальная частица с отрицательной энергией может упасть в эту черную дыру и превратиться в реальную частицу или античастицу. В этом случае она уже не обязана аннигилировать со своим партнером, а покинутый партнер может либо упасть в ту же черную дыру, либо, если его энергия положительна, выйти из области вблизи черной дыры как реальная частица или как античастица (рис. 7.4). Удаленному наблюдателю покажется, что этот партнер испущен из черной дыры. Чем меньше черная дыра, тем меньше расстояние, которое придется пройти частице с отрицательной энергией до превращения в реальную частицу, и, следовательно, тем больше скорость излучения и кажущаяся температура черной дыры.

Положительная энергия испускаемого излучения должна уравновешиваться потоком частиц с отрицательной энергией, направленным в черную дыру. Согласно уравнению Эйнштейна Е = mc^2 (где Е – энергия, m – масса, а с – скорость света), энергия прямо пропорциональна массе, а поэтому поток отрицательной энергии, входящий в черную дыру, уменьшает ее массу. Когда черная дыра теряет массу, площадь ее горизонта событий уменьшается, но это уменьшение энтропии черной дыры с лихвой возмещается энтропией испущенного излучения, так что второй закон термодинамики никогда не нарушается.

Кроме того, чем меньше масса черной дыры, тем выше ее температура. Поэтому, когда черная дыра теряет массу, ее температура и скорость излучения возрастают, и, следовательно, потеря массы идет еще быстрее. Пока еще не совсем ясно, что происходит, когда масса черной дыры в конце концов становится чрезвычайно малой, но наиболее логичным представляется, что черная дыра полностью исчезает в гигантской последней вспышке излучения, эквивалентной взрыву миллионов водородных бомб.

- 91 -

Переидти к оглавлению

Страницы: 92 93 94